Properties and Reactions of 1,3-Oxathiolans. Part 6. ${ }^{1-3}$ Chemical Equilibration and ${ }^{1} \mathrm{H}$ Nuclear Magnetic Resonance Conformational Study of 4,5-Dimethyl-, 2,4,5-Trimethyl-, and 2,2,4,5- and 2,4,4,5-Tetramethyl-1,3-Oxathiolans

By Raimo Keskinen, Alpo Nikkilä, and Kalevi Pihlaja,* Department of Chemistry, University of Turku, SF-20500 Turku 50, Finland
The $60 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectra of nine differently substituted 4.5 -dimethyl-1,3-oxathiolans have been recorded and analysed. The n.m.r. data are compared with those previously reported for the 4-methyl- and 5-methyl-1.3-oxathiolans. Epimeric derivatives were chemically equilibrated to determine the energy differences between the diastereoisomers in question. The thermodynamic quantities obtained were used to clarify different spatial interactions in these compounds.

In previous reports we assigned configurations to numerous $r-2, c$ - and $-t-4$-methyl ${ }^{2}$ and -5 -methyl-1,3-oxathiolan derivatives ${ }^{3}$ and the preferred conformations were inferred from the ${ }^{1} \mathrm{H}$ n.m.r. data and results of chemical equilibration. To test our conformational deductions on 1,3 -oxathiolans and the energy contributions of pseudoaxial 4 - and 5 -methyl substituents, numerous 4,5 -dimethyl-1,3-oxathiolans (Table 1) were synthesized, their ${ }^{1} \mathrm{H} 60 \mathrm{MHz}$ n.m.r. spectra recorded, and

[^0]the chemical equilibrations of epimeric diastereoisomers carried out.

experimental

3-Mercaptobutan-2-ol.-Butane-2,3-diol was converted to chloroacetate (60%), ${ }^{4}$ b.p. $338-343 \mathrm{~K}$ at 3.3 kPa , which was methanolysed to 3 -chlorobutan-2-ol (80%), b.p. 323324 K at 3.3 kPa , and then added dropwise to a concentrated KOH solution at 343 K to obtain 2,3-epoxybutane (70%), b.p. 328 K. 3 -Mercaptobutan-2-ol (30-35\%; 23.5\%
${ }^{3}$ Part 3, R. Keskinen, A. Nikkilä, and K. Pihlaja, Tetrahedron, 1972, 28, 3943.
R. J. Meltzer and J. A. King, J. Amer. Chem. Soc., 1953, 75, 1355.
racemate, 76.5% meso-form) b.p. $338-339 \mathrm{~K}$ at 2.5 kPa , $n_{\mathrm{D}}{ }^{293} 1.4792, d_{277}^{293} 1.0089$, was then obtained from the latter and thiourea. ${ }^{5}$

3-Mercapto-3-methylbutan-2-ol.-t-Amyl alcohol was first converted into 3 -methylbut-2-ene (80%) b.p. 311 K , and then oxidized ${ }^{6}$ to 3 -methylbutane-2,3-diol (40%), b.p. $352-353 \mathrm{~K}$ at 1.6 kPa , which gave the chloroacetates (21%), b.p. $332-336 \mathrm{~K}$ at 2.0 kPa , which were then converted into a mixture of 3 -chloro- 3 -methyl- and 3 -chloro-2-methyl-butan-2-ol (52%), b.p. 315 K at 2.4 kPa . The chlorobutanols gave 2,3-epoxy-2-methylbutane (70\%), b.p. 336-337 K, from which 3-mercapto-3-methylbutan-2ol was obtained. ${ }^{5}$ The product (yield 30%) boiled at 355 K and 2.3 kPa and consisted of $90 \% 3$-mercapto-3-methyland 10\% 3-mercapto-2-methyl-butan-2-ol.

Table 1
Physical constants of 4,5-dimethyl-1,3-oxathiolans

Substitution	$\begin{aligned} & \text { B.p. (K) } \\ & {[p / \mathrm{kPa}]} \end{aligned}$	$n_{\text {D }}{ }^{293}$	d_{277}^{293}	Yield (\%)
4,5-Me ${ }_{2}$	348-351	1.4784 trans	$1.0444^{\text {a }}$	32*
	[6.4] ${ }^{\text {a }}$	1.4847 cis		
2,4,5-Me ${ }_{3}$	$\underset{[6.7]^{a}}{333-343}$	$1.4650 r-2, t-4, c-5^{b}$		$60^{\text {a }}$
		$1.4663 r-2, c-4, t-5^{b}$		
		$1.4711 r-2, c-4, c-5^{b}$	0.9926	
		$1.4702 r-2, t-4, i-5^{b}$		
2,2,4,5-Me ${ }_{4}$	343-345	1.4578 trans	0.9531	69 ${ }^{\text {a }}$
	[6.7] ${ }^{\text {b }}$	1.4650 cis	0.9655	
2,4,4,5-Me ${ }_{4}$	353 [7.7] ${ }^{\text {a }}$	1.4603 cis		37 a
		1.4568 trans		

Table 2
Equilibria between isomeric 2,4,5-trimethyl- and 2,4,4,5-tetramethyl-1,3-oxathiolans at different temperatures

	K			
1,3-Oxathiolan	278 K	298 K	318 K	338 K
2,4,5-Me $\left.{ }^{(\text {meso }}\right)^{\text {b }}$	3.99	3.48	3.09	2.81
	± 0.10 *	± 0.13	± 0.04	± 0.06
2,4,5-Me ${ }_{3}(\pm)^{\text {c }}$		3.37	2.98	2.64
2,4,4,5-Me ${ }_{4}{ }^{\text {d }}$	4.46	$\pm$$\pm 0.107$	$\pm{ }_{\mathbf{0 . 5 5}}^{\mathbf{0 . 0 6}}$	± 0.10
	± 0.07 *	± 0.23	± 0.22	

K determined using g.l.c. analysis.
${ }^{\bullet}$ Standard deviation. ${ }^{{ }^{\circ} K} K=[s y n] /[a n t i] . \quad{ }^{\circ} K=[r-2$, $\left.t-4, c-5] /[r-2, c-4, t-5] .{ }^{d} K=[c i s-2,5]\right][$ trans-2,5]. • Value at 280 K.

Table 3
Thermodynamic parameters for isomer equilibria

Equilibrium	$\overline{\mathrm{J} \mathrm{~mol}^{-1}}$	$\frac{-\Delta S^{\circ} \mid}{\mathrm{J}^{-1} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}}$	$\begin{gathered} -\Delta G_{2981} / \\ \mathrm{J} \mathrm{~mol}^{-1} \end{gathered}$
$r-2, t-4, t-5 \rightleftharpoons r-2, c-4, c-5$	$4567 \pm .75{ }^{\text {a }}$	4.94 ± 0.24	3095
$r-2, c-4, t-5 \rightleftharpoons r-2, t-4, c-5$	5160 ± 207	7.18 士 0.65	3020
$r-2,4,4, t-5 \rightleftharpoons r-2,4,4, c-5$	4442 ± 29	3.43 ± 0.10	3420
trans-2,4 \rightleftharpoons cis-2,4	-176 ± 18	-0.10 ± 0.06	-146
trans-2,5 \rightleftharpoons cis-2,5	4657 ± 322	5.56 ± 1.00	2996

4,5-Dimethyl-, 2,4,5-trimethyl-, 2,2,4,5-tetramethyl-, and 2,4,4,5-tetramethyl-1,3-oxathiolans were prepared conventionally ${ }^{3,4}$ from 3 -mercaptobutan- 2 -ol or 3 -mercapto-3-methylbutan-2-ol and a suitable aldehyde or ketone. ${ }^{3}$ The physical constants of the compounds are collected in Table 1.
Equilibrium constants were determined at three or four temperatures as stated before ${ }^{2,3}$ (Table 2) and the thermo-
${ }^{5}$ F. G. Bordwell and H. M. Andersen, J. Amer. Chem. Soc., 1953, 75, 4959.
${ }^{6}$ G. Wagner, Ber., 1888, 21, 1230.
dynamic parameters (Table 3) derived from them by a linear regression programme written for HP 65 calculator.
${ }^{1}$ H N.m.r. spectra were recorded on a Perkin-Elmer R 10 spectrometer. The solutions contained 450μ of solvent CCl_{4} and $50 \mu \mathrm{l}$ of substrate.

Spectral Analysis.-The spectra examined consisted of $\mathrm{AM}_{3} \mathrm{XR}_{3}$ type spin multiplets. The final parameters were computed using LAME programme on DEC-10 computer system in Turku.

RESULTS AND DISCUSSION

The diastereoisomers were separated by preparative g.l.c. ${ }^{3}$ except $r-2,4,4, c-5$-tetramethyl-1,3-oxathiolan (Table 1) which was not purified for n.m.r. analysis. The isomers were characterized by physical constants, n.m.r., and chemical equilibration. Equilibrations were carried out as stated before ${ }^{2,3}$ in ether solution using $\mathrm{BF}_{3}, \mathrm{Et}_{2} \mathrm{O}$ as acid catalyst. Equilibrated samples were analysed by g.l.c. ${ }^{2,3}$ to obtain equilibrium constants at various temperatures (Table 2), from which enthalpy, entropy, and free energy differences between the isomers were derived (Table 3).
Configurational Assignments.-The configurational assignments for the 4,5 -substituted 1,3 -oxathiolans were based on the n.m.r. parameters. On the basis of the magnitude of the vicinal, $J_{4.5}$, coupling constants the mutual orientation of 4 - and 5 -methyl groups was easily established (cf. ref. 2). Those isomers for which $J_{4.5}$ is $4.36-4.85 \mathrm{~Hz}$ (Table 5) have cis-4,5-Me M_{2} configurations and those for which $J_{4.5}$ is $6.40-9.31 \mathrm{~Hz}$ have trans-4,5Me_{2} configurations (Table 5). On the basis of chemical shifts of $\mathrm{H}(2), \mathrm{H}(4), \mathrm{H}(5), \mathrm{Me}(2)$, and $\mathrm{Me}(5)$ (Table 4) it was evident ${ }^{2,3}$ that in the case of $2,4,5$-trimethyl- 1,3 oxathiolans the isomer with the shortest retention time was r-2,t-4, c-5-trimethyl-1,3-oxathiolan and the isomer with the longest retention time was $r-2, t-4, t-5$-trimethyl1,3 -oxathiolan. This situation is in agreement with earlier evidence taking into account that the analytical conditions employed in equilibrium measurements were practically identical with those employed for the 2,4 - 2 and 2,5 -dimethyl ${ }^{3}$ derivatives. In the case of 2,4,4,5-tetramethyl-1,3-oxathiolans only one isomer was obtained pure enough for n.m.r. analysis which proved (Table 4) that its configuration was $r-2, t-5 .^{3}$
Chemical Equilibration.-The equilibrium between $r-2, t-4, t-5$ - and $r-2, c-4, c-5$-trimethyl-1,3-oxathiolans is most clearly illustrated by equation (l). Like cis-2-

alkyl-5-methyl- ${ }^{3}$ and cis-2-alkyl-4-methyl-1,3-oxathiolans ${ }^{2} r-2, c-4, c-5$-trimethyl-1,3-oxathiolan exists predominantly in conformation C where both 2 - and 5 -methyl groups attain essentially equatorial positions whereas the trans-isomer is a mixture of two conformations or conformer families T^{1} and T^{2}. In all conformations $\mathrm{C}(5)$ is
the flap atom but it is, however, obvious that these conformations may be more or less distorted towards the corresponding half-chair or envelope form where oxygen lies at the tip. This distortion would minimize the
half-chair form $C T^{2}$. The justification of this conformational situation will be discussed in more detail in context with the n.m.r. results.

In the case of 2,4,4,5-tetramethyl-1,3-oxathiolans only

Table 4
Chemical shifts ${ }^{a}$ for the various compounds in CCl_{4}

1,3-Oxathiolan	$\delta[\mathrm{H}(2)]$	$\delta[\mathrm{H}(5)]$	$\delta[H(4)]$	$\delta[\mathrm{Me}(2)]$	$\delta[\mathrm{Me}(4)]$	$\delta[\mathrm{Me}(5)]$
cis-4,5-Me ${ }_{2}$	4.92	3.91	3.36		1.14	1.24
	4.68					
trans-4,5-Me ${ }_{2}$	4.86	3.46	3.00		1.30	1.30
$r-2, t-4, c-5-\mathrm{Me}_{3}$	5.21	3.47	3.11	1.49	1.28	1.30
$r-2, c-4, t-5-\mathrm{Me}_{3}$	5.27	3.84	3.09	1.50	1.30	1.24
$r-2, c-4, c-5-\mathrm{Me}_{3}$	4.92	3.94	3.32	1.52	1.16	1.25
$r-2, t-4, t-5-\mathrm{Me}_{3}$	5.34	4.27	3.44	1.45	1.18	1.18
2,2,cis-4,5-Me ${ }_{4}$		4.26	3.29	1.61	1.17	1.22
				1.53		
2,2,trans-4,5-Me ${ }_{4}$		3.74	3.13	1.56	1.25	1.26
$r-2,4,4, t-5-\mathrm{Me}_{4}$	5.20	3.65		1.49	1.34	1.15
					1.26	

Table 5
Values of $\mathrm{H}(4), \mathrm{H}(5), \mathrm{H}(4), \mathrm{Me}(4), \mathrm{H}(5), \mathrm{Me}(5)$ and $\mathrm{H}(2), \mathrm{H}\left(2^{\prime}\right)$ or $\mathrm{Me}(2)$ coupling constants (Hz) for the various $1,3-$ oxathiolans

Substitition	$J_{\text {cis }}{ }^{4,5}$	$J_{\text {crame }}{ }^{4,5}$	$J_{\text {4.Me }}$	$J_{\text {5.Me }}$	$J_{2 . \mathrm{Me}}$ or $\mathbf{2 . 2}{ }^{\text {r }}$
cis-4,5-Me ${ }_{2}$	4.75		6.89	6.42	4.93
trans-4,5-Me ${ }_{2}$		7.84	6.57	6.09	
$r-2, t-4, c-5-\mathrm{Me}_{3}$		8.42	6.62	5.97	5.88
$r-2, c-4, t-5-\mathrm{Me}_{3}$		6.40	6.48	6.32	6.10
$r-2, c-4, c-5-\mathrm{Me}_{3}$	4.85		6.90	6.34	5.85
$r-2, t-4, t-5-\mathrm{Me}_{3}$	4.74		6.95	6.55	6.00
2,2, cis-4,5-Me ${ }_{4}$	4.36		7.03	6.37	
2,2, trans-4,5-Me		9.31	6.60	6.06	
$\boldsymbol{r}-2,4,4, t-5-\mathrm{Me}_{4}$				6.40	5.82

pseudoaxial interaction due to the 4 -methyl substituent without an appreciable effect on the other nonbonded interactions. trans-Conformations include either a pseudoaxial 5-methyl (T^{1}) or 2-methyl (T^{2}) group. The experimental entropy difference $4.94 \pm 0.24 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ is within the experimental error for 2,5-dimethyl-1,3oxathiolans, $5.56 \pm 1.00 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (Table 3). ${ }^{3}$ Taking into account that the experimental entropy difference for 2,4-dimethyl-1,3-oxathiolans ${ }^{2}$ is $c a .0$ (Table 3), and the fact ${ }^{2}$ that the conformational energies of pseudoaxial methyl groups in positions 2 and 5 do not deviate greatly from each other the value $-\Delta H^{\circ}{ }_{2,5-\mathrm{Me}_{2}}+$ $\left(-\Delta H^{\circ}{ }_{2.4-\mathrm{Me}_{2}}\right)=4.66-0.18=4.44 \pm 0.23 \mathrm{~kJ} \mathrm{~mol}^{-1}$ should be roughly equal to the conformational enthalpy difference between C and T, in excellent agreement with the experimental value, $4.57 \pm 0.08 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Table 3).

The configurational equilibrium between $r-2, c-4, t-5-$ and r-2,t-4,c-5-trimethyl-1,3-oxathiolans may be considered in the light of equation (2). The excess entropy of the $r-2, c-4, t-5$-configuration, $7.18 \pm 0.64 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (Table 3), is an indication of its conformational flexibility in comparison with that of the $r-2, t-4, c-5$-form. Obviously the $r-2, t-4, c-5$-form exists predominantly in the triequatorial $\mathrm{C}(5)$ envelope ($T C^{1}$) but includes somewhat the corresponding half-chair conformation ($T C^{2}$) where 4,5 -methyl groups are pseudoaxially orientated. The r-2,c-4,t-5-form has at least two conceivable $\mathrm{C}(5)$ envelopes, namely $C T^{1}$ and $C T^{3}$, and may also exist somewhat in both $\mathrm{O}(1)$ envelopes and in the triequatorial
the trans-2,5-isomer was separated for n.m.r. investigation. Chemical equilibration, however, gave results

which are in accord with earlier findings. ${ }^{2,3}$ The diminished entropy difference $3.43 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (Table 3) reflects the fact that T^{2} form includes an extra e,e-Me,Me-gauche interaction which makes it less stable by comparison with T^{1} than was the case in equation (1). This leads inevitably to a decrease in the entropy of mixing of the transisomer in equation (3).
N.m.r. Spectra.-Typical $J_{4.5}$ values for 1,3-oxathiolans ${ }^{2,3,7,8}$ extend over the ranges [equation (4)] $J_{4 \mathrm{a}, 5 \mathrm{e}} 4.4-5.8, J_{4 \mathrm{e} .5 \mathrm{e}} 2.2-3.2, J_{4 \mathrm{a}, 5 \mathrm{a}} 9.6-11.0$, and $J_{4 \mathrm{e} .5 \mathrm{a}}$ $3.8-5.5 \mathrm{~Hz}$. The 4,5 -dimethyl-1, 3 -oxathiolans with the
9.31 Hz) in 4,5-dimethyl-1,3-oxathiolans. Unfortunately we do not know the exact value of $J_{4 \mathrm{e}, 5 \mathrm{e}}$ in a similar environment but in cis-2,4-dimethyl-1,3-oxathiolan $J_{4 \mathrm{e}, 5 \mathrm{e}}$ is $2.49 \mathrm{~Hz}^{2}$ and hence we assume that it is reasonable to

estimate $J_{4 \mathrm{e}, 5 \mathrm{e}}$ at 2 Hz . Employing equation (5) it is possible to evaluate the free energy differences between the conformer families with $J_{4 \mathrm{a}, 5 \mathrm{a}}$ and $J_{4 \mathrm{e}, 5 \mathrm{e}}$ arrangements for trans-4,5-dimethyl-, r-2,c-4,t-5-trimethyl- and r-2, $t-4, c$-5-trimethyl-1,3-oxathiolans.
trans-4,5: $J_{\text {obs }}=x J_{4 \mathrm{a}, 5 \mathrm{a}}+(1-x) J_{4 \mathrm{e}, 5 \mathrm{e}}$
Equation (5) gives the results shown in Table 6 for the equilibria between the conformer families in question.

Table 6
Relative population of the two possible conformer families of trans-4,5-dimethyl-1,3-oxathiolans in CCl_{4} and the corresponding free energy differences at 306 K

The free energy difference, $3.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, between the diequatorial and the diaxial $\mathrm{C}(5)$-envelope of trans-4,5-dimethyl-1,3-oxathiolan is in good agreement with the different interactions involved in these conformations. The free energy difference, $1.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, between the conformation families in the case of the $r-2, c-4, t-5$ derivative [equation (2)] confirms the view that some of the half-chair form ($C T^{2}$) must be included since otherwise the proportion of the $J_{4 \mathrm{a}, 5 \mathrm{a}}$ arrangement should be $<50 \%$. The free energy difference, $5.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$, between the $C(5)$-envelope ($T C^{1}$) and the half-chair form ($T C^{2}$) in the case of the $r-2, t-4, c-5$ form allows us to estimate (assuming $\Delta S^{\circ} c a .0$) that the half-chair form as such is $c a .6 \mathrm{~kJ}$ mol^{-1} less stable than the $\mathrm{C}(5)$-envelope: ${ }^{1,2} \Delta H^{\circ}$ (envelope - half-chair $)=\Delta H^{\circ}(2 \mathrm{a}-\mathrm{Me})+\Delta H^{\circ}(4 \mathrm{e}, 5 \mathrm{e}-\mathrm{Me}, \mathrm{Me})$ $-\Delta H^{\circ}(5 \mathrm{a}-\mathrm{Me})-\Delta H^{\circ}(4 \mathrm{a}-\mathrm{Me})+5.1=4+3-5-1$ $+5.1 \sim 6$.

Conclusions.-Together with the data presented earlier the results of equilibration studies and n.m.r. analysis are best explained with the aid of envelope structures where $C(5)$ is the flap atom though in some cases the corresponding half-chair form where $C(4)$ is above and sulphur below the plane defined by the remaining three atoms as well as the $\mathrm{O}(\mathrm{I})$-envelope may appear to be favoured. This proposition is in agreement with the opinions of Pasto et al..7 and Wilson et al. ${ }^{8}$ as well as the
${ }^{7}$ D. J. Pasto, F. M. Klein, and T. W. Doyle, J. Amer. Chem. Soc., 1967, 89, 4368.
e G. E. Wilson, jun., M. G. Huang, and F. A. Bovey, J. Amer. Chem. Soc., 1970, 92, 5907.
recent conformational energy calculations and conclusions of Wilson ${ }^{9}$ dealing with 2 -methyl-1,3-oxathiolan. According to Wilson the most stable conformation of 2 -methyl-1,3-oxathiolan has both the sulphur and the methyl β to the flap atom and the methyl anti to it with respect to the ring plane.
Our results do not confirm that the 1,3-oxathiolan ring itself has a clearcut preference for a certain conformation. The steric requirements of the ring are, however, as important as those of the substituents (the same ring conformation predominates in both 2,4-, 2,5-, and $2,4,5$-series). The energy barrier between the envelope forms with $C(5)$ or $\mathrm{O}(1)$ as the flap atom is not high enough to bias the ring in either of these conformations. ${ }^{9}$ Thus

- G. E. Wilson, jun., J. Amer. Chem. Soc., 1974, 96, 2426.
the steric requirements of the substituents may greatly effect the position of the energy minimum.
A methyl substituent in the 4 -position has no great steric demands of its own though they may be reflected in the most probable conformation through further substitution. Pseudoaxial alkyl substituents at positions 2 and 5 show remarkable conformational interactions the magnitude of which varies from $4.3(2 \mathrm{a}-\mathrm{Me})^{2}$ to $8.6\left(2 \mathrm{a}-\mathrm{Bu}^{\mathrm{t}}\right)^{1} \mathrm{~kJ} \mathrm{~mol}^{-1}$.

We thank the Science Research Council of the Finnish Academy (A. N.) and the Emil Aaltonen Foundation (R. K.) for financial support and Mr. M. Hotokka for technical assistance in the computer work.

[^0]: 1 Part 5, K. Pihlaja, R. Keskinen, and A. Nikkilä, Bull. Soc. chim. belges, 1976, 85, 435.
 ${ }^{2}$ Part 4, R. Keskinen, A. Nikkilä, K. Pihlaja, and F. G. Riddell, J.C.S. Perkin II, 1974, 466.

